
instructables

IOT Made Simple: Playing With the ESP32 on Arduino IDE

by mjrovai

Let's explore in this tutorial, the ESP32, the fantastic
newer Development Kit board for IoT use. This board,
developed by Espressif, should be the NodeMCU's
successor, due to its low price and great features.

But is also important to point that NOT ALL libraries
or functions that you are used to working with
ESP8266 and/or Arduino are yet functional on this

new board. Probably this will be soon, so check it
regularly on ESP 32 Forum WebPage.

Here we will learn how to program the ESP32 on
Arduino IDE, exploring its most common functions
and libraries, point some of the important differences
and new features introduced with this great chip.

Step 1: The ESP32 Main Characterictics

The ESP32 is an under US$10 board with great advantages over similar IoT boards in the market.

This board has a dual processed microprocessor that helps a lot, because when one processor is handle
communication, the other one is in charge of I/O control, for example. This feature will prevent some issues that
happen with ESP8266, where the sole CPU needs stop controlling I/Os when handle with Comm. Besides, the
ESP32 has integrated WIFI, BLUETOOTH, DAC, several ADC (not only one as the ESP8266), capacitive touch

IOT Made Simple: Playing With the ESP32 on Arduino IDE: Page 1

sensors, etc (give a look at above block diagram). And the good news is that Power Consumption is almost the
same as ESP8266.

Bellow a chart that can show us its main characteristics, and differences when compared with ESP8266:

Let's point its main properties in more details:

Key Features:

240 MHz dual core Tensilica LX6 microcontroller with 600 DMIPS
Integrated 520 KB SRAM
Integrated 802.11 b/g/n HT40 Wi-Fi transceiver, baseband, stack and LwIP
Integrated dual mode Bluetooth (classic and BLE)
16 MB flash, memory-mapped to the CPU code space
2.3V to 3.6V operating voltage
-40°C to +125°C operating temperature
Onboard PCB antenna / IPEX connector for external antenna

Sensors:

Ultra-low noise analog amplifier
Hall sensor
10x capacitive touch interfaces
32 kHz crystal oscillator

34 x GPIO:

3 x UARTs, including hardware flow control
3 x SPI
2 x I2S
18 x ADC input channels
2 x DAC
2 x I2C
PWM/timer input/output available on every GPIO pin
OpenOCD debug interface with 32 kB TRAX buffer
SDIO master/slave 50 MHz
Supports external SPI flash up to 16 MB
SD-card interface support

IOT Made Simple: Playing With the ESP32 on Arduino IDE: Page 2

Security Related:

WEP, WPA/WPA2 PSK/Enterprise
Hardware accelerated encryption: AES/SHA2/Elliptical Curve Cryptography/RSA-4096

Performance:

Supports sniffer, Station, SoftAP and Wi-Fi direct mode
Max data rate of 150 Mbps@11n HT40, 72 Mbps@11n HT20, 54 Mbps@11g, and 11 Mbps@11b
Maximum transmit power of 19.5 dBm@11b, 16.5 dBm@11g, 15.5 dBm@11n
Minimum receiver sensitivity of -97 dBm
135 Mbps UDP sustained throughput
5 A power consumption in Deep-sleep

Step 2: BoM - Bill of Material

ESP32 Dev Kit: ESP32 Development Board (US$ 8.52)
LED
Resistor: 330 ohm
Potentiometer: 10K ohm
Protoboards

IOT Made Simple: Playing With the ESP32 on Arduino IDE: Page 3

Step 3: ESP32 Arduino IDE Installation

We will use the Arduino IDE to program our ESP32, same way we do with the ESP8266 family.

Install Drivers:

It is important that you have installed on your computer, the updated CP210x USB to UART Driver. Enter in this
link: usb-to-uart-bridge-vcp-drivers and install the proper driver for your OS.

Install Library:

The novelty here is that Expressif itself in its GitHub, will give us the proper directions for library installation:
arduino-esp32. Follow the instructions for your OS. In my case (MacOS), the installation is very simple:

Open Terminal and execute the following command (copy->paste and hit enter):

mkdir -p ~/Documents/Arduino/hardware/espressif && \
cd ~/Documents/Arduino/hardware/espressif && \
git clone https://github.com/espressif/arduino-esp32.git esp32 && \
cd esp32/tools/ && \
python get.py

After that, restart Arduino IDE and it's done! You must see several boards on "TOOLS" Menu. Select the
appropriate for you. In general, the "generic" ESP32 DEV MODULE works fine.

When you open the Arduino IDE for the first time, you will note that the default upload speed is 921,600 bauds.
This can provoque instability. Change it to 115,200 bauds!

IOT Made Simple: Playing With the ESP32 on Arduino IDE: Page 4

Step 4: Hello World! Blinking a LED

As usual, the first thing to do when we start exploring a new HW is to blink a LED.

Go to Examples Menu in the IDE and open the Blink sketch.

The ESP32 DevKit, has a built-in LED that is connected to its GPIO 02. It is important to check if "LED_BUILTIN"
is automatically recognized by IDE. If not, you must add to code the line:

int LED_BUILTIN = 2;

Each ESP32 board has an internal LED connected to a different GPIO

/*
 ESP 32 Blink
 Turns on an LED on for one second, then off for one second, repeatedly.
 The ESP32 has an internal blue LED at D2 (GPIO 02)
*/

int LED_BUILTIN = 2;

void setup()
{
 pinMode(LED_BUILTIN, OUTPUT);
}

void loop()
{
 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

Below the internal LED blinking (note the blue light) together with an external one connected to GPIO 2:

There are several different boards with different pin maps in the market. The above diagram shows the board that I
am using. You can find it here: /ESP32-Development-Board

Perfect! So, DigitalWrite() is working perfectly, same way with ESP8266 and Arduino. BTW, DigitalRead() also
works the same way to read a digital input, like a push-button for example.

IOT Made Simple: Playing With the ESP32 on Arduino IDE: Page 5

Picture of Hello World! Blinking a LED

Step 5: The Touch Sensor

Let's jump to a new cool feature, the Touch Sensor!

The ESP32 has 10 internal capacitive touch sensors. You can use it as buttons for example.

Those sensors are connected with several GPIOs:

T0: GPIO 4
T1: GPIO 0
T2: GPIO 2
T3: GPIO 15
T4: GPIO 13
T5: GPIO 12
T6: GPIO 14
T7: GPIO 27
T8: GPIO 33
T9: GPIO 32

In order to read them you must use the function: touchRead(Touch Pin #);

For example, to read the Touch Sensor 0 (T0), you must do something like:

int value = touchRead(4);

Let's create a code, where if we touch the sensor T0 (GPIO4), the LED will be on.

Use the serial monitor to check the values read by the sensor and adjust the code properly.

Below the complete code:

IOT Made Simple: Playing With the ESP32 on Arduino IDE: Page 6

/***
* ESP32 Touch Test and LED Ctrl
* Touch pin ==> Touch0 is T0 which is on GPIO 4 (D4).
* LED pin ==> D2
*
* MJRoBot.org 6Sept17
***/

#define TOUTCH_PIN T0 // ESP32 Pin D4
#define LED_PIN 2
int touch_value = 100;

void setup()
{
 Serial.begin(115200);
 delay(1000); // give me time to bring up serial monitor
 Serial.println("ESP32 Touch Test");
 pinMode(LED_PIN, OUTPUT);
 digitalWrite (LED_PIN, LOW);
}

void loop()
{
 touch_value = touchRead(TOUTCH_PIN);
 Serial.println(touch_value); // get value using T0
 if (touch_value < 50)
 {
 digitalWrite (LED_PIN, HIGH);
 }
 else
 {
 digitalWrite (LED_PIN, LOW);
 }
 delay(1000);
}

And below the ESP32 working:

IOT Made Simple: Playing With the ESP32 on Arduino IDE: Page 7

Step 6: Analog Input

Let's now test how to Input analog value signals.

There are in total 18 x 12 bits ADC input channels, versus only 1 X 10bits ADC on NodeMCU.

p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px 'Helvetica Neue'; color: #454545}
span.Apple-tab-span {white-space:pre}

GPIO ADC Channel

GPIO 0 ==> ADC2_CH1
GPIO 2 ==> ADC2_CH2
GPIO 4 ==> ADC2_CH0
GPIO 12 => ADC2_CH5
GPIO 13 => ADC2_CH4
GPIO 14 => ADC2_CH6
GPIO 15 => ADC2_CH3
GPIO 25 => ADC2_CH8
GPIO 26 => ADC2_CH9
GPIO 27 => ADC2_CH7
GPIO 32 => ADC1_CH4
GPIO 33 => ADC1_CH5
GPIO 34 => ADC1_CH6
GPIO 35 => ADC1_CH7
GPIO 36 => ADC1_CH0
GPIO 37 => ADC1_CH1
GPIO 38 => ADC1_CH2
GPIO 39 => ADC1_CH3

To read the analog input, you will the same as have done with Arduino and ESP8266:

IOT Made Simple: Playing With the ESP32 on Arduino IDE: Page 8

int analog_value = analogRead(36);

It's very important to note that, the ESP32 ADCs have 12bits of resolution (versus 10bits on ESP8266 and
Arduino), so the total range of ADCs reading go to 4,095 (instead 1,027 on Arduinos and ESP8266) when a
maximum of 3.3V is applied to its inputs.

For input, let's use a 10K ohm potentiometer, connecting it from 3.3V and GND. Let's use its variable output to be
the input for ESP32 ADC pins. The Above diagram shows the potentiometer connected to GPIO 36 that is the
ADC1 Channel 0. Try also other inputs on your board.

Run the simple code below:

<p>/***
* ESP32 Analog Input Test
* Analog Input: ADC_1_0 pin ==> GPIO36 (VP).
*
* MJRoBot.org 6Sept17
***/
//Analog Input
#define ANALOG_PIN_0 36
int analog_value = 0;</p><p>void setup()
{
 Serial.begin(115200);
 delay(1000); // give me time to bring up serial monitor
 Serial.println("ESP32 Analog IN Test");
}</p><p>void loop()
{
 analog_value = analogRead(ANALOG_PIN_0);
 Serial.println(analog_value);
 delay(500);
}</p>

Turn your potentiometer and observe on IDE Serial Monitor the measurements going from zero to 4,095.

Step 7: Dimming a LED: Analog Output Using PWM

If we want to "Dimmer a LED" on ESP8266 or an Arduino, we can simply use a command like analogWrite(), that
IOT Made Simple: Playing With the ESP32 on Arduino IDE: Page 9

will vary the PWM value of its output, simulating an analog value. Unfortunately, we still do not have such kind of
command developed for the ESP32 on Arduino IDE. but the very good news is that all 36 of ESP32 GPIOs has a
PWM capability, what is great! Only we must use more complex code to reach the same result.

So, let's program one of that GPIOs with a PWM output signal.

 You can find a very good tutorial in details about how PWM works at this link: esp32-arduino-led-pwm-fading.

The first thing to think about a PWM signal to be generated is its frequency. We will use a value of 5000 Hz, that
works fine with the LED. We must also specify the LED PWM channel and the resolution of the PWM duty cycle,
in bits. We can choose a channel from 0 to 15 and a resolution between 1 and 16 bits. We will use channel 0 and
a resolution of 8 bits.

int freq = 5000;
int ledChannel = 0;
int resolution = 8;

Let's use GPIO2, where we have our external LED attached (and the internal one).

#define LED_PIN 2

Those parameters must be defined during setup() phase, using below functions:

void setup()
{
 ledcSetup(ledChannel, freq, resolution);
 ledcAttachPin(LED_PIN, ledChannel);
}

To turn on the LED with a specific brightness, we must define the "duty cycle".

For example, to turn off the LED, the duty cycle must be zero and the function ledcWrite(ledChannel, dutyCycle)
used to send the value thru a specific PWM channel:

int dutyCycle = 0;
ledcWrite(ledChannel, dutyCycle);

Different values of the dutyCycle variable will turn on the LED with different brightness. this variable, dutyCycle,
will vary from 0 to 255, once the resolution used is 8 bits.

We can use the Potentiometer (connected to analog_value variable) to manually setup the dutyCycle variable, but
once their range of values are different, let's use a map function to match input and output:

dutyCycle = map(analog_value, 0, 4095, 0, 255);

Below the complete code:

IOT Made Simple: Playing With the ESP32 on Arduino IDE: Page 10

* ESP32 Analog Input/Output Test
* Analog Input: ADC_1_0 pin ==> GPIO36 (VP).
* PWM LED pin ==> GPIO 02
*
* MJRoBot.org 6Sept17
***/
//Analog Input
#define ANALOG_PIN_0 36
int analog_value = 0;

// PMW LED
#define LED_PIN 2
int freq = 5000;
int ledChannel = 0;
int resolution = 8;
int dutyCycle = 0;

void setup()
{
 Serial.begin(115200);
 delay(1000); // give me time to bring up serial monitor
 Serial.println("ESP32 Analog IN/OUT Test");

 ledcSetup(ledChannel, freq, resolution);
 ledcAttachPin(LED_PIN, ledChannel);
 ledcWrite(ledChannel, dutyCycle);
}

void loop()
{
 analog_value = analogRead(ANALOG_PIN_0);
 Serial.println(analog_value);
 dutyCycle = map(analog_value, 0, 4095, 0, 255);
 ledcWrite(ledChannel, dutyCycle);
 delay(500);
}

That's it!

IOT Made Simple: Playing With the ESP32 on Arduino IDE: Page 11

Step 8: Servo Control

Let's control a Servo Motor using the PWM capability of our ESP32. The code will be basically the same one that
was used to control the LED brightness.

First, it's important to remember that the frequency to work with a Micro Servo is 50Hz, so we must change the
frequency parameter to 50 (instead of 5,000 used with LED). We must also specify the LED PWM channel and the
resolution of the PWM duty cycle, in bits. We will use again channel 0 and a resolution of 8 bits.

int freq = 50;
int channel = 0;
int resolution = 8;

The Servo will be connected to GPIO 5 (see above electrical diagram).

#define SERVO_PIN 5

Same as with LED, those parameters must be defined during setup() phase, using below functions:

void setup()
{
 ledcSetup(channel, freq, resolution);
 ledcAttachPin(SERVO_PIN, channel);
}

To position the servo on a specific angle, we must define the "duty cycle" (please, see the above diagram).

For example, to position the servo around 90 degrees, the duty cycle must be around 21 and the function
ledcWrite(ledChannel, dutyCycle) should be used to send the value thru the PWM channel:

int dutyCycle = 21;
ledcWrite(channel, dutyCycle);

Different values of the dutyCycle variable will position the servo with different angles. This variable, dutyCycle,

IOT Made Simple: Playing With the ESP32 on Arduino IDE: Page 12

should vary from 10 to 32 (this range was gotten manually).

Same as we did with the LED, the Potentiometer (connected to analog_value variable) can be used to manually
setup the dutyCycle variable and so, changing the servo position. Once their ranges of values are different, let's
use a map function to match input and output:

dutyCycle = map(analog_value, 0, 4095, 10, 33);

Below the complete code:

/***
* ESP32 Servo Control
* Analog Input: ADC_1_0 pin ==> GPIO36 (VP).
* PWM SERVO pin ==> GPIO 05
*
* MJRoBot.org 6Sept17
***/
//Analog Input
#define ANALOG_PIN_0 36
int analog_value = 0;

// PMW SERVO
#define SERVO_PIN 5
int freq = 50;
int channel = 0;
int resolution = 8;
int dutyCycle = 21;

void setup()
{
 Serial.begin(115200);
 delay(1000); // give me time to bring up serial monitor
 Serial.println("ESP32 Servo Control");

 ledcSetup(channel, freq, resolution);
 ledcAttachPin(SERVO_PIN, channel);
 ledcWrite(channel, dutyCycle);
}

void loop()
{
 analog_value = analogRead(ANALOG_PIN_0);
 Serial.print(analog_value);
 Serial.print(" Duty Cycle ==> ");
 Serial.println(dutyCycle);
 dutyCycle = map(analog_value, 0, 4095, 10, 33);
 ledcWrite(channel, dutyCycle);
 delay(50);
}

Now we can work with the Ultrasonic Sensor on top of the servo and build an IoT Radar!. But this will be another
tutorial! ;-)

IOT Made Simple: Playing With the ESP32 on Arduino IDE: Page 13

IOT Made Simple: Playing With the ESP32 on Arduino IDE: Page 14

Step 9: Connecting to Internet: Local Time Stamp

After testing some of the GPIO digital/analog and input/output capabilities, let's connect our ESP32 on the internet!

With ESP8266 family we were using the library esp8266wifi.h for that. With the ESP32, the library to use will be:

<wifi.h>

A very simple example would be programming our board to capture from the internet the local time. This is a very
good feature to have on hand on projects. The below code will do it for us:

/**
 * Local Time Stamp with ESP32
 * Developed by Marcelo Rovai - 8 September 2017
 **/
#include <NTPClient.h>
#include <WiFi.h>
#include <WiFiUdp.h>

#define NTP_OFFSET -3 * 60 * 60 // In seconds
#define NTP_INTERVAL 60 * 1000 // In miliseconds
#define NTP_ADDRESS "europe.pool.ntp.org"

WiFiUDP ntpUDP;
NTPClient timeClient(ntpUDP, NTP_ADDRESS, NTP_OFFSET, NTP_INTERVAL);

void setup()
{
 Serial.begin(115200);
 timeClient.begin();
}

You can see at Serial monitor the local time being stamped.

Step 10: Simple WiFi Server

Let's now test our ESP32 as a simple WiFi Server.

Open the EXAMPLES menu on your Arduino IDE and get the ESP32 WiFi/SimpleWiFiServer.ino
sketch:

About this program:

IOT Made Simple: Playing With the ESP32 on Arduino IDE: Page 15

WiFi Web Server LED Blink

Created for arduino 25 Nov 2012 by Tom Igoe
Ported for sparkfun esp32 31.01.2017 by Jan Hendrik Berlin

A simple web server that lets you blink an LED via the web. This sketch will print the IP address of your ESP32
WiFi network to the Serial monitor. From there, you can open that address in a web browser to turn on and off the
LED on pin 5.

If the IP address of your board is for example 10.0.1.40:

http://10.0.1.40/Hturns the LED on

http://10.0.1.40/L

turns the LED off

This example is written for a network using WPA encryption. For WEP or WPA, change the Wifi.begin() call
accordingly.

Circuit: LED attached to pin 5

So, let's use the program without significant modifications. Change the External LED Pin to GPIO5

Off course, if you prefer change the code for GPIO2 w/o changing the HW.

First, enter your network credentials:

const char* ssid = "yourssid";
const char* password = "yourpasswd";

And upload it on your ESP32.

The first thing that you will see at your serial Monitor will be the information that your ESP32 is connected and
what is its Ip Address:

WiFi connected.
IP address:
10.0.1.40

Open your favorite browser, typing this IP address. You will get a WebPage like the one above. There you can
Turn on or off the LED remotely.

IOT Made Simple: Playing With the ESP32 on Arduino IDE: Page 16

Step 11: Conclusion

We can go on and on here. There is a lot left to
explore on ESP32. So, let's stop for a moment and
think about that. I will return soon with new tutorials.

As always, I hope this project can help others find
their way in the exciting world of electronics, robotics,
and IoT!

Please visit my GitHub for updated files: NodeMCU
Dual Temp Monitor

For more projects, please visit my blog: MJRoBot.org

Saludos from the south of the world!

See you at my next instructable!

Thank you,

Marcelo

IOT Made Simple: Playing With the ESP32 on Arduino IDE: Page 17

IOT Made Simple: Playing With the ESP32 on Arduino IDE: Page 18

	IOT Made Simple: Playing With the ESP32 on Arduino IDE
	Step 1: The ESP32 Main Characterictics
	Step 2: BoM - Bill of Material
	Step 3: ESP32 Arduino IDE Installation
	Step 4: Hello World! Blinking a LED
	Step 5: The Touch Sensor
	Step 6: Analog Input
	Step 7: Dimming a LED: Analog Output Using PWM
	Step 8: Servo Control
	Step 9: Connecting to Internet: Local Time Stamp
	Step 10: Simple WiFi Server
	Step 11: Conclusion

