
Temperature Measurement with a

Thermistor and an Arduino

Class Notes for EAS 199B

Gerald Recktenwald∗

May 25, 2013

1 Measuring the Thermistor Signal

A thermistor indicates temperature by a change in electrical resistance. The
analog input pins of the Arduino can only measure voltage, so the electrical
resistance of a thermistor cannot be measured directly1. A simple technique for
converting the (variable) resistance of the thermistor to a voltage is to use the
thermistor in a voltage divider, as shown in the left side of Figure 1. The right
side of Figure 1 is a representation of the voltage divider circuit connected to
an Arduino.

The voltage divider has two resistors in series. In the left side of Figure 1, the
upper resistor is the thermistor, with variable resistance Rt. The lower resistor
has a fixed resistance R. A voltage Vs is applied to the top of the circuit2. The
output voltage of the voltage divider is Vo, and it depends on Vs and R, which
are known, and Rt, which is variable and unknown. As suggested by the wiring
diagram in the right side of Figure 1, Vo is measured by one of the analog input
pins on the Arduino.

1.1 The Voltage Divider

A voltage divider is a standard configuration of resistors. In this section we
derive the simple equation that relates V0, Vs, R and Rt.

The two resistors in series share the same current, I. The voltage drop across
the two resistors is

Vs = I(R+Rt) (1)

∗Mechanical and Materials Engineering Department,Portland State University,Portland,
OR, 97201, gerry@me.pdx.edu

1Electrical resistance is always measured indirectly, usually by inferring the resistance from
a measured voltage drop. Precision resistance measurements involve techniques different from
those described in these notes. Multimeters and other instruments that measure resistance
have built-in circuits for measuring the voltage drop across a resistor when a precisely con-
trolled and measured current is applied to the resistor.

2In the instructions for its data logging shield, adafruit recommends using the 3.3V input
to power sensors because because the 5V line is noisey. To use the 3.3V line, the 3.3V signal is
tied to the Aref pin. See http://www.ladyada.net/make/logshield/lighttemp.html. In my
informal experiments, there was no apparent difference between the 3.3V and 5V supplies.

EAS 199B – Thermistor Measurement 2

Vs

Vo

Rt

R

Figure 1: Voltage divider circuit (left) and sample breadboard wiring (right) for
measuring voltage to indicate thermistor resistance. For the breadboard wiring
on the right, Vo is measured with analog input Pin 1.

and the voltage drop across the fixed resistor is

Vo = IR (2)

Solve Equation (1) and Equation (2) for I and set the resulting equations equal
to each other

I =
Vs

R+Rt
and I =

Vo
R

=⇒ Vs
R+Rt

=
Vo
R

The last equality can be rearranged to obtain.

Vo
Vs

=
R

R+Rt
(3)

Rearranging Equation (3) to solve for Rt gives

Rt = R

(
Vs
Vo
− 1

)
. (4)

Equation (4) is used to compute the thermistor resistance from the measurement
of Vo.

2 Measuring Rt and T with an Arduino

In this section a series of Arduino sketches are developed for measuring the
thermistor output. The reader is assumed to be familiar with writing and run-
ning code on an Arduino. The sketches start with a simple printing of voltage
and resistance, and progress to a reusable thermistor object that can easily be
incorporated into other projects.

The sketches presented here can be adapted to work with any thermistor.
The specific implementation here uses an Cantherm MF52A103J3470 NTC ther-
mistor with a nominal resistance of 10 kΩ at 21 ◦C. The fixed resistor is a nom-
inal 10 kΩ resistor. For any specific thermistor you will need a fixed resistor

G. Recktenwald, gerry@me.pdx.edu May 25, 2013

EAS 199B – Thermistor Measurement 3

of nominally equal resistance, and a calibration equation for resistance as a
function of temperature.

The code for these sketches was developed after reading the sample code
on the Arduino support site3. The purpose of this document is to provide an
introduction to Arduino programming by using the thermistor measurement as
a case study. The pace will probably be too slow for readers already famil-
iar with Arduino programming. Readers looking for code to incorporate into
their sketches should focus on Section 3.1, A Reusable Thermistor Function and
Section 3.2, A Reusable Thermistor Object.

2.1 First Step: Measuring Vo and Computing Rt

The ThermistorVoltageResistance.pde sketch in Listing 2.1 measures and
prints Vo, the voltage across the fixed resistor. The thermistor resistance com-
puted from Equation (4) is also printed.

There are two main sections to ThermistorVoltageResistance.pde: the
setup function and the loop function. These two functions are required in all
Arduino sketches. The setup function establishes communication parameters
with the host computer before running the main code.

void setup() {

Serial.begin(9600); // open serial port and set data rate to 9600 bps

Serial.println("Thermistor voltage and resistance measurement:");

Serial.println("\n Vs Vo Rt");

}

The Serial.begin(9600) statement sets the communication speed between the
board and the host computer to be 9600 bits per second. The two Serial.println
statements add labels to the serial monitor screen at the start of program exe-
cution.

The loop function is where the main work of the program occurs. The loop

function begins with variable declarations and the assignment of constants.

int ThermistorPin = 1; // Analog input pin for thermistor voltage

int Vo; // Integer value of voltage reading

float R = 9870.0; // Fixed resistance in the voltage divider

float Rt; // Computed resistance of the thermistor

The voltage reading is stored in Vo as an integer because the analogRead func-
tion returns integers between 0 and 1023. The R and Rt variables are floating
point type because we want store the result of computing Rt with Equation (4)
using maximum precision.

The middle of the loop() function consists of the call to the analogRead

function, and the direct evaluation of Equation (4).

Vo = analogRead(SensePin);

Rt = R*(1023.0 / float(Vo) - 1.0);

The evaluation of Rt is a direct translation of Equation (4). On a 10 bit scale,
1023.0 is the value corresponding to Vs, the maximum possible value of the
voltage, which is 5V. The float(Vo) expression converts the integer value stored
in Vo to floating point numbers before the division is performed. Consider the
difference between integer and floating point math when Vo = 478.

3See http://www.arduino.cc/playground/ComponentLib/. In particular, the code here is
most similar to the second version of the thermistor implementation, http://www.arduino.
cc/playground/ComponentLib/Thermistor2.

G. Recktenwald, gerry@me.pdx.edu May 25, 2013

EAS 199B – Thermistor Measurement 4

// File: ThermistorVoltageResistance.pde

//

// Use a voltage divider to indicate electrical resistance of a thermistor.

// -- setup() is executed once when sketch is downloaded or Arduino is reset

void setup() {

Serial.begin(9600); // open serial port and set data rate to 9600 bps

Serial.println("Thermistor voltage and resistance measurement:");

Serial.println("\n Vo Rt");

}

// -- loop() is repeated indefinitely

void loop() {

int ThermistorPin = 1; // Analog input pin for thermistor voltage

int Vo; // Integer value of voltage reading

float R = 9870.0; // Fixed resistance in the voltage divider

float Rt; // Computed resistance of the thermistor

Vo = analogRead(ThermistorPin);

Rt = R*(1023.0 / float(Vo) - 1.0);

Serial.print(" "); Serial.print(Vo);

Serial.print(" "); Serial.println(Rt);

delay(200);

}

Listing 1: ThermistorVoltageResistance.pde

Integer math:
1023

467
− 1 = 2− 1 = 1

Floating point math:
1023.0

float(467)
− 1.0 = 2.1927− 1.0 = 1.1927

Performing the division as floating point numbers instead of integers prevents
rounding and therefore preserves precision.

Running ThermistorVoltageResistance.pde produces the following out-
put in the Serial Monitor4.

Thermistor voltage and resistance measurement:

Vo Rt

487 10863.08

488 10820.59

488 10820.59

487 10863.08

488 10820.59

489 10778.28

...

Notice how the resolution of the analog to digital converter (ADC) on the Ar-
duino causes discontinuous jumps in the measured value of Rt. When the value
of Vo changes from 487 to 488, the value of Rt jumps from 10863 Ω to 10820 Ω.
The jump is due to a change in the least significant bit of the value obtained
by the 10 bit ADC, not because of a discontinuous variation in the physical

4The specific values of Vo and Rt will vary from run to run, and will depend on the charac-
teristics of the fixed resistor and thermistor used, and on the temperature of the thermistor.

G. Recktenwald, gerry@me.pdx.edu May 25, 2013

EAS 199B – Thermistor Measurement 5

// File: ThermistorTemperature.pde

//

// Use a voltage divider to indicate electrical resistance of a thermistor.

// Convert the resistance to temperature.

// -- setup() is executed once when sketch is downloaded or Arduino is reset

void setup() {

Serial.begin(9600); // open serial port and set data rate to 9600 bps

Serial.println("Thermistor temperature measurement:");

Serial.println("\n Vo Rt T (C)");

}

// -- loop() is repeated indefinitely

void loop() {

int ThermistorPin = 1; // Analog input pin for thermistor voltage

int Vo; // Integer value of voltage reading

float R = 9870.0; // Fixed resistance in the voltage divider

float logRt,Rt,T;

float c1 = 1.009249522e-03, c2 = 2.378405444e-04, c3 = 2.019202697e-07;

Vo = analogRead(ThermistorPin);

Rt = R*(1023.0 / (float)Vo - 1.0);

logRt = log(Rt);

T = (1.0 / (c1 + c2*logRt + c3*logRt*logRt*logRt)) - 273.15;

Serial.print(" "); Serial.print(Vo);

Serial.print(" "); Serial.print(Rt);

Serial.print(" "); Serial.println(T);

delay(200);

}

Listing 2: ThermistorTemperature.pde

resistance. Conversion of the measured Rt values to temperature will result
in a corresponding jump in T values. Appendix A contains an analysis of the
temperature resolution limit of the Arduino as a function of Rt and R.

2.2 Computing T from Rt

As described in the thermistor calibration exercise, the thermistor temperature
can be computed with the Steinhart-Hart equation

T =
1

c1 + c2 ln(R) + c3(ln(R))3
(5)

For the thermistor used in this demonstration, c1 = 1.009249522 × 10−3, c2 =
2.378405444× 10−4, c3 = 2.019202697× 10−7.

The ThermistorTemperature.pde sketch in Listing 2 incorporates the eval-
uate of Equation (5) into the Arduino code. The substantial changes from
ThermistorVoltageResistance.pde are the definition of the constants for the
Steinhart-Hart equation in the local function,

float c1 = 1.009249522e-03, c2 = 2.378405444e-04, c3 = 2.019202697e-07;

and the evaluation of T with the Steinhart-Hart equation

logRt = log(Rt);

T = (1.0 / (c1 + c2*logRt + c3*logRt*logRt*logRt)) - 273.15;

G. Recktenwald, gerry@me.pdx.edu May 25, 2013

EAS 199B – Thermistor Measurement 6

Running ThermistorTemperature.pde produces the following output in the
Serial Monitor.

Thermistor temperature measurement:

Vo Rt T (C)

486 10905.74 22.47

482 11078.15 22.07

485 10948.58 22.37

484 10991.59 22.27

485 10948.58 22.37

485 10948.58 22.37

485 10948.58 22.37

483 11034.78 22.17

...

This output shows that a change of one unit in Vo causes a change of 0.1 ◦C in
the computed temperature. Thus, we can infer that the temperature resolution
of this thermistor/aduino combination is 0.1 ◦C. Note that resolution is only
a measure of the smallest difference that a sensor and instrument combination
can detect. A resolution of 0.1 ◦C does not imply that the accuracy of the
measurement is ±0.1 ◦C. The temperature resolution is discussed further in
Appendix A.

3 Modular Code for Thermistor Measurements

Reusable code and task delegation

The use of modular code for temperature measurement can
be imagined as a conversation between two workers, a lab
manager a temperature measurement expert, T Expert.

Lab Manager: What is the temperature of the
sensor on pin 1?

T Expert: 22.3 ◦C

In this imaginary conversation, Lab Manager is respon-
sible for performing a number of tasks (reading values,
making decisions, adjusting settings) and does not want
to get bogged down in the details of temperature mea-
surement. T Expert is focused on one job: reading the
temperature of a thermistor sensor. T Expert can (and
does) work with other lab managers on other projects.

At one time, Lab Manager was responsible for making
temperature measurements by herself, but as her responsi-
bilities grew and became more complex, she found that she
could do her job more efficiently and with fewer errors if
she delegated the details of the temperature measurement
task to T Expert.

Because T Expert has refined his technique for tem-
perature measurement, Lab Manager has come to trust
the values returned by T Expert. T Expert can improve
his measurement process, for example by using a more ac-
curate calibration equation, but any improvements to the
measurement process do not (need to) change the transac-
tion: Lab Manager still askes for the temperature on pin
1, and T Expert still returns a value, the temperature.

The code in the sketches in Listing 2.1
and Listing 2 are practically useful.
For measuring the output of a single
thermistor, there is no intrinsic need
to modify the code further, except as
may be necessary to adjust the ci coef-
ficients and the value of fixed resistor
R.

As the complexity of Arduino pro-
grams increases, there is a benefit
to introducing more structure to the
software. In this section and the next,
the thermistor measuring code will be
isolated into modules that can easily
be added to new projects. The short
term cost is that the code becomes
more a little more complicated. The
long term benefit is that once the code
is developed, it can be reused in other
projects without having to dig into the
details of the voltage-to-temperature
conversion. The sidebar to the right
uses an analogy to explain the bene-
fits of creating modular and reusable
code.

Figure 2 is a common example
of a reusable code module, namely

G. Recktenwald, gerry@me.pdx.edu May 25, 2013

EAS 199B – Thermistor Measurement 7

Rt = (1023.0 /float(Vt) - 1.0)

logRt = log(Rt)

log(x) function in

the math library

Perform operations to

compute log(x) and

return that value

Value of Rt

Value of log(Rt)

Figure 2: The mathematics library has several reusable functions.

the log(x) function from the standard
mathematics library. Do you know how the arduino log(x) function works? Do
you know how many internal variables (like the ci in the thermistor calibration)
and what kinds of operations are required to obtain a value for log(x)? The
answer to these questions is, “Of course not.” Or perhaps you would think,
“Why should I care as long as the correct result is returned?”. Those answers
make sense and reflect the decisions to delegate tasks to people or services or
utilities that we trust.

With the example of log(x) in mind, what are the desirable characteristics
of a reusable module that allows us to measure the output of a thermistor?
There are many valid answers. In the next section we will develop a simple
model of a reusable thermistor module where all the code resides in a single
function. In another section, a more flexible, object oriented module will be
developed.

We really have two goals. First, we want to create a reusable module for
thermistor measurements. Reusable code is valuable for current and future
applications of temperature measurement with an Arduino. Second, we want to
understand some of the general principles for reusable code development. The
use of modular, reusable code is good practice in any programming work.

3.1 A Reusable Thermistor Function

In this section a function (or subroutine) for measuring thermistor temperature
is developed. The function has one input, the integers identifying the pin mea-
suring the output for the thermistor voltage divider. The function has a single
return value, the temperature of the thermistor.

The code for the thermistor function is in a separate file, thermistorFun.cpp
in Listing 3. To use this function in a sketch, you need to refer to its code in-
terface – it’s definition of input and output parameters – in the sketch before
the function is called. The code interface (also called a function prototype) is
in yet another file thermistorFun.h, which his only one line long and which is
shown in Listing 4. The thermistorFun.h and thermistorFun.cpp files con-
stitute a reusable code module for performing thermistor temperature readings
with an Arduino. The code in thermistorFun.cpp embodies the details of the
temperature measurement from the thermistorTemperature.pde sketch.

The ThermistorTemperatureFunction.pde sketch has two references to the
thermistorFun function. At the start of the sketch is the line

#include "thermistorFun.h"

The #include directive tells the compiler to read the contents of the file thermistorFun.h
as if that file were part of the thermistorFun.pde.

G. Recktenwald, gerry@me.pdx.edu May 25, 2013

EAS 199B – Thermistor Measurement 8

// File: thermistorFun.cpp

//

// Read a thermistor with Arduino and return temperature

#include "WProgram.h"

#include "thermistorFun.h"

float thermistorRead(int Tpin) {

int Vo;

float logRt,Rt,T;

float R = 9870; // fixed resistance, measured with multimeter

// c1, c2, c3 are calibration coefficients for a particular thermistor

float c1 = 1.009249522e-03, c2 = 2.378405444e-04, c3 = 2.019202697e-07;

Vo = analogRead(Tpin);

Rt = R*(1024.0 / float(Vo) - 1.0);

logRt = log(Rt);

T = (1.0 / (c1 + c2*logRt + c3*logRt*logRt*logRt)) - 273.15;

return T;

}

Listing 3: The ThermistorFun.cpp code contains the C code function for ther-
mistor measurements.

// File: thermistorFun.h

// Header file defining prototype for functions that read thermistors

float thermistorRead(int Tpin);

Listing 4: The ThermistorFun.h header file defines C function prototype for
thermistor measurements.

The temperature measurement is performed by the single line

T = thermistorRead(ThermistorPin);

which stores the thermistor temperature in the variable T. The thermistorRead
function hides the details of performing the temperature measurement. This
makes the code in the sketch easier to read and understand.

Running ThermistorTemperatureFunction.pde produces the following out-
put in the Serial Monitor.

Thermistor temperature measurement:

T (C)

22.52

22.72

22.62

22.72

22.62

22.52

22.62

...

G. Recktenwald, gerry@me.pdx.edu May 25, 2013

EAS 199B – Thermistor Measurement 9

// File: ThermistorTemperatureFunction.pde

//

// Use a voltage divider to indicate electrical resistance of a thermistor.

// Thermistor reading and conversion calculations are encapsulated in a

// reusable function.

#include <thermistorFun.h>

// -- setup() is executed once when sketch is downloaded or Arduino is reset

void setup() {

Serial.begin(9600); // open serial port and set data rate to 9600 bps

Serial.println("Thermistor temperature measurement:");

Serial.println("\nT (C)");

}

// -- loop() is repeated indefinitely

void loop() {

int ThermistorPin = 1; // Analog input pin for thermistor voltage

float T; // Value of temperature reading

T = thermistorRead(ThermistorPin);

Serial.println(T);

delay(200);

}

Listing 5: ThermistorTemperatureFunction.pde

float specifies

the type of value

that is returned.

Define the data type

of the input values

Tpin is the name of the

local variable in the

thermistorRead function.

float thermistorRead(int Tpin) {

 float T;

 T = ...

 return T;

}

Figure 3: Defining the variable types for input and output of the ThermistorFun
function.

G. Recktenwald, gerry@me.pdx.edu May 25, 2013

EAS 199B – Thermistor Measurement 10

3.2 A Reusable Thermistor Object

In this section we develop a C + + object for thermistor measurements with an
Arduino. This object-oriented approach improves on the procedural function
introduced in the preceding section by easily allowing for multiple thermistors
to be used in the same sketch. It also allows the calibration coefficients and the
(measured) value of the fixed resistance to be specified for each of the thermis-
tors. Similar functionality could be added to the procedural (C code) implemen-
tation, but not as elegantly. For a terse introduction to using C++ classes in Ar-
duino development, See http://arduino.cc/en/Hacking/LibraryTutorial.

Table 1 lists the source files that constitute the reusable thermistor objects.
Table 2 lists the public methods that the object oriented module provides.

Table 1: Files in the C + + implementation of thermistor measurement.

thermistor.cpp Class implementation

thermistor.h Class specification/definition

thermistorSensor.pde Sketch demonstrating of using
the object-oriented interface.

Table 2: Objects in the C + + implementation of thermistor measurement.

Thermistor Constructor. Use this to define a thermistor object.
Example: th = Thermistor(1) creates a thermistor
object th that reads the voltage divider output on
pin 1.

fixedResistance Public method to change the value of the fixed resis-
tance in a thermistor object.
Example: th.fixedResistance(9942) changes the
fixed resistance for the th object to 9942 Ω.

coefficients Public method to change a the coefficients in the
Steinhart-Hart calibration equation for a thermistor
object Example:
th.coefficients(1.23e-4,5.67e-5,8.90e-6)

changes the calibration coefficients of the th ob-
ject to c1 = 1.23 × 10−4, c2 = 5.67 × 105, and
c3 = 8.90× 106.

getTemp Public method to read the temperature of a thermis-
tor object. Example: T = th.getTemp() reads the
thermistor connected to the th object.

Running thermistorSensor produces the following output

T (C)

22.77

22.57

G. Recktenwald, gerry@me.pdx.edu May 25, 2013

EAS 199B – Thermistor Measurement 11

Table 3: Code sizes for different implementations of the Arduino temperature
measurement.

Code Size (Bytes)
thermistorVoltageResistance.pde 4004
thermistorTemperature.pde 4504
thermistorTemperatureFunction.pde 4350
thermistor.pde 4514

22.77

22.67

22.57

22.57

22.67

22.67

22.57

Not Done Yet: Continue Here

G. Recktenwald, gerry@me.pdx.edu May 25, 2013

EAS 199B – Thermistor Measurement 12

// File: Thermistor.cpp

//

// Use a voltage divider to indicate electrical resistance of a thermistor

// Thermistor reading and T conversion are encapsulated in reusable objects

//

// Based on code by Max Mayfield, max.mayfield@hotmail.com

// posted on the Arduino playground

// http://www.arduino.cc/playground/ComponentLib/Thermistor2

// Modified and extended by G. Recktenwald, recktenwaldg@gmail.com

// 2010-06-07

#include "WProgram.h"

#include "Thermistor.h"

// --- constructor

Thermistor::Thermistor(int pin) {

_pin = pin; // Analog input pin to read voltage divider output

_Rfix = 9970; // Resistance of fixed resistor in the divider

_a1 = 1.009249522e-03; // Coefficients in the Steinhart-Hart equation

_a2 = 2.378405444e-04;

_a3 = 2.019202697e-07;

}

// --- Set the value of the fixed resistance

void Thermistor::fixedResistance(float Rfix) {

_Rfix = Rfix;

}

// --- Set values of coefficients in the Steinhart-Hart equation

void Thermistor::coefficients(float a1, float a2, float a3) {

_a1 = a1;

_a2 = a2;

_a3 = a3;

}

// --- Read the voltage across the fixed resistance, and from it compute T

float Thermistor::getTemp() {

int vin = analogRead(_pin); // voltage corresponding to thermistor Rt

float Rt;

float logRt, T;

Rt = _Rfix * ((1023.0 / float(vin)) - 1.0);

logRt = log(Rt);

T = (1.0 / (_a1 + _a2*logRt + _a3*logRt*logRt*logRt)) - 273.15;

return T;

}

Listing 6: The Thermistor.cpp code contains the class implementation for
objected-oriented thermistor measurements.

G. Recktenwald, gerry@me.pdx.edu May 25, 2013

EAS 199B – Thermistor Measurement 13

// File: Thermistor.h

//

// Use a voltage divider to indicate electrical resistance of a thermistor

// Thermistor reading and T conversion are encapsulated in reusable objects

//

// Vdd ---o Vdd is supply voltage, typically 5V

// |

// Rt (thermistor)

// |

// Vo ---o Vo is output from the voltage divider: Vo = Vdd*R/(R+Rt)

// |

// R (fixed resistor, R approx. equal to Rt

// |

// GND

//

// Based on code by Max Mayfield, max.mayfield@hotmail.com

// posted on the Arduino playground

// http://www.arduino.cc/playground/ComponentLib/Thermistor2

// Modified and extended by G. Recktenwald, recktenwaldg@gmail.com

// 2010-06-07

#ifndef Thermistor_h

#define Thermistor_h

#include "WProgram.h"

#include "math.h"

class Thermistor {

public:

Thermistor(int pin);

float getTemp();

void fixedResistance(float Rfix);

void coefficients(float a1, float a2, float a3);

private:

int _pin;

float _Rfix;

float _a1, _a2, _a3;

};

#endif

Listing 7: The Thermistor.h header file defines the class interface for object-
oriented thermistor measurements.

G. Recktenwald, gerry@me.pdx.edu May 25, 2013

EAS 199B – Thermistor Measurement 14

// File: ThermistorSensor.pde

//

// Use a voltage divider to indicate electrical resistance of a thermometer

// Measurements and conversions are managed via objects

#include <Thermistor.h>

// --- temp is a thermistor object

Thermistor temp(1);

// -- setup() is executed once when sketch is downloaded or Arduino is reset

void setup() {

Serial.begin(9600);

temp.fixedResistance(9870);

temp.coefficients(1.009249522e-03, 2.378405444e-04, 2.019202697e-07);

Serial.println("T (C)");

}

// -- loop() is repeated indefinitely

void loop() {

double temperature = temp.getTemp();

Serial.println(temperature);

delay(200);

}

Listing 8: ThermistorSensor.pde

G. Recktenwald, gerry@me.pdx.edu May 25, 2013

EAS 199B – Thermistor Measurement 15

A Temperature resolution

We now consider how the resolution of the Analog to Digital Converter and the
choice of the fixed resistor can affect the temperature resolution of the circuit
in Figure 1.

The thermistors used in the fish tank project can be characterized by their
resistance at 21 ◦C. We will designate that resistance R∗

T

R∗
T = R(T = 21 ◦C) (6)

The Analog to Digital Converter (ADC) on the Arduino board has 10 bits of
resolution: the range of voltage inputs is divided into 210 − 1 = 1023 intervals.
The standard input range is Vs = 5 V so the standard resolution of the input
ADC is5

δV =
Vs

1023
= 4.89 mV (7)

How does this voltage resolution determine the temperature resolution of the
Arduino when measuring thermistor output with the circuit in Figure 1? If
the voltage reading has a resolution of ±δV , then the uncertainty in voltage is
±δV/2.

When the resistance of the thermistor changes, the voltage output of the
voltage divider changes. From Equation (4),

R∗
T = RT

(
Vs
V ∗
o

− 1

)
then

R∗
T + δR = R

(
Vs

V ∗
o + δV

− 1

)
(8)

T ∗ + δT = f(R∗
T + δR) (9)

Therefore
δT = (T ∗ + δT)− T ∗ = f(R∗

T + δR)− f(R∗
T) (10)

For the thermistor in this demonstration, dT (T = T ∗) = 0.099 ◦C. Therefore,
we say that the precision of the 10-bit reading at the nominal resistance is
approximately 0.1 ◦C. In other words, due to the resolution of the of ADC,
which from Equation (7) is 4.9 mV, the smallest temperature change that can
be detected is 0.1 ◦C.

Figure 4 is a plot of the precision, δT , as a function of the fixed resistance R.
The minimum resolution (which is desired) is obtained when R = R∗

T . However,
the shape of the δT = f(R) function is rather flat near R∗

T . Therefore, the
voltage divider is relatively forgiving of mismatch between R and R∗

T .
It must be stressed that δT is not the accuracty of the temperature reading.

δT is only the resolution (or precision) of the temperature reading.

5The maximum 10-bit number is 210 − 1 = 1023. If the number line is divided into
segments labeled 0, 1, 2, . . . , 1023, there are 1024 values (1024 tick marks) and 1023 intervals.
Therefore, the correct scaling is 5/1023, not 5/1024.

G. Recktenwald, gerry@me.pdx.edu May 25, 2013

EAS 199B – Thermistor Measurement 16

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

R (kΩ)

δ
T

(°

 C
)

Figure 4: Variation in temperature resolution δT as a function of the fixed
resistance R in the voltage divider for a given nominal R∗

T .

B Issues to Consider

B.1 ATMEL chips want low impedance on ADC inputs

From this thread on the Adafruit forum

http://forums.adafruit.com/viewtopic.php?f=25&t=15744

fat16lib quotes the ATmega328 data sheet, section 23.6.1:

The ADC is optimized for analog signals with an output impedance
of approximately 10 kΩ or less.

The user is recommended to only use low impedance sources with
slowly varying signals, since this minimizes the required charge trans-
fer to the S/H capacitor.

fat16lib then refers to another thread on the Adafruit forum where an 18-bit
external ADC is discussed

http://forums.adafruit.com/viewtopic.php?f=31&t=12269

B.2 Using an external, high precision ADC

http://forums.adafruit.com/viewtopic.php?f=25&t=15744#p77858

B.3 Using an op-amp voltage buffer to reduce input impedance

Wikipedia article giving an overview of the buffer amplifier

G. Recktenwald, gerry@me.pdx.edu May 25, 2013

EAS 199B – Thermistor Measurement 17

http://en.wikipedia.org/wiki/Buffer_amplifier

National Instruments has a tutorial on selecting the components for a voltage-
following buffer

http://zone.ni.com/devzone/cda/tut/p/id/4494

G. Recktenwald, gerry@me.pdx.edu May 25, 2013

