
Living with the Lab What’s this void loop thing?
Fall 2011 Gerald Recktenwald
v: October 31, 2011 gerry@me.pdx.edu

1 Overview

This document aims to explain two kinds of loops: the loop function that is a required component
of all Arduino sketches, and the standard for and while loops that are used whenever iteration
within a function is needed.

Beginning Arduino programmers can be confused by the semantics and logic of the “void loop”
function that is required by all Arduino sketches. The loop function is repeated continuously because
it is called by a hidden loop that controls the execution of the Arduino program. In other words,
the loop function is the body of a loop that is running in a master (or main) program. The master
program is added automatically to the compiled version of the user sketch before the compiled code
is downloaded to the microcontroller.

It’s possible, and often necessary, to include for loops and while loops in the body of the
loop function. The beginning programmer can get twisted around by the idea that there are loops
running inside a function called loop. These are not hard concepts to grasp once you understand
how each part of the program is being repeated, and how often each repetition is performed. The
goal of this document is to expose and clarify those concepts.

We begin with a review of the basic program structure of a sketch. We show that the loop and
setup functions are just ordinary Arduino functions that happen to have special names. Next we
review the syntax of for and while loops. The paper ends with a series of example programs that
demonstrate the interaction between the loop function and loops iterating inside the loop function.
The body of the paper covers three main concepts of Arduino programming:

• Basic structure of an Arduino sketch.

• Review of the syntax and use of Arduino functions, with special attention to the setup and
loop functions.

• Syntax and use of for loops and while loops.

The final section of the paper uses sample programs to demonstrate how the repetition of the loop

function interacts with for and while loops inside the loop function.

2 Basic Program Structure

All Arduino sketches must have two functions: setup and loop. The setup function is executed
only once when the Arduino board is first turned on, or when the reset button is pressed. The loop

function is executed repeatedly (and indefinitely) after the setup function is finished.

2.1 Required and Optional Parts of Sketch

Figure 1 is an annotated version of the basic blink sketch1. The sketch has the required setup and
loop functions, along with an optional header at the top of the file. Most substantial sketches have
a header that consists of comment statements and the definitions of global variables.

1This is a slightly modified version of the blink.pde that is distributed with the Arduino IDE.

LWTL :: What’s this void loop thing? 2

Header:
• Overview comments
• Global variables

Setup:
• Execute only once
• Tasks for start-up

Loop:
• Execute repeatedly
• Primary tasks for the sketch

// File: blink.pde
//
// Turns on an LED on for one second,
// then off for one second, repeatedly.

int LED_pin = 11;

void setup() {
 pinMode(LED_pin, OUTPUT);
}

void loop() {
 digitalWrite(LED_pin, HIGH);
 delay(1000);
 digitalWrite(LED_pin, LOW);
 delay(1000);
}

Figure 1: The header, setup, and loop components of a basic Arduino sketch.

Global variables defined in the header are shared by all functions in the sketch. The blink sketch
in Figure 1 has one global variable, LED pin. The value of LED pin is available to all functions in the
blink.pde file. A value is assigned to LED pin in the header (the value 11). The LED pin variable
is used once in setup and twice in loop.

The setup function in the blink sketch performs only one task, configuring the digital pin for
output. The loop function turns the LED on, waits one second, turns the LED off, and waits
one more second. That pattern is repeated indefinitely, causing the LED to blink. Note that the
blinking is achieved without the need to write an explicit loop inside the body of the loop function.
That’s because the loop function is called by the invisible loop in the invisible main program that
is added after the sketch is compiled and before it is downloaded to the AVR microcontroller on the
Arduino board.

2.2 Structure of an Arduino Function

An Arduino sketch can contain user-defined functions designed to perform a specific sub-task of a
more complex program. Programming statements are encapsulated in the code block that forms the
body of the function. This code block is isolated from other code blocks (i.e., from the code in other
functions), and this isolation is an important mechanism for keeping code blocks from adversely
interacting with each other.

Of course, programs also needs a mechanism to get data into a function and to obtain a result
from a function. Input and output from a function is implemented with input parameters and return
values. The programmer decides what values are needed (what inputs) to perform a computation.
The programmer also decides what results (what outputs) need to be returned to the part of the
program that invoked or called the function.

Functions allow programs to build reusable chunks of code for tasks that appear more than once
in a sketch. Functions also provide a way to use the same code in other sketches. For example,
the sidebar on the next page shows a function that computes the tangent of an angle. This is a
contrived example because the Arduino IDE provides a tan function for computing the tangent.
One could imagine other computations that are less common, for example to read 20 values from
a photoresistor and return the average reading. Such a read photoresistor function would have

LWTL :: What’s this void loop thing? 3

a more complex function body, but could share the input and output structure of the tangent

function listed in the sidebar.

A function with an input and an output

In contrast to the loop function, consider the function
defined below that returns the tangent of an input value.

double tangent(double x) {
double t = sin(x)/cos(x);

return(t);

}

The function definition for tanget indicates that a value
of type double is returned to the calling function when
tangent terminates. The function definition also specifies
that an input value of type double must be supplied by the
calling function. Inside the body of the tangent function,
the input value is stored in the variable x.

A complete exposition on the design and use of
functions is beyond the scope of this document2. For
our immediate purposes, it is important to recognize
that setup and loop are ordinary Arduino functions.
The names setup and loop are special because they
are required by other parts of the Arduino software
architecture.

All Arduino functions have the potential for mul-
tiple input parameters and a single return value. The
inputs and return values are specified in the one-line
function definition statement that is required at the
start of any function.

Figure 2 shows a skeletal loop function. The func-
tion definition statement begins with void, which de-
clares that the loop function is not going to return
a value. The void keyword is not optional: all func-
tions must indicate the kind of value that they return to the calling program. Some other types of
return values are int, float, double and char. More generally, return values can be any type of
Arduino variable3. To indicate that the function returns no value, the function is declared to have
a void return value.

As shown in Figure 2,the loop function has no input parameters. The empty parentheses are
required: you cannot simply drop the parentheses for a function that has no input our output.

The setup function has a different purpose from the loop function. However, it is similar to
loop in that it does not return a value, and it has no input parameters. In summary,

• setup and loop have no return values. Hence the function definitions begin with void setup

and void loop.

• setup and loop have no input parameters. Hence the function definitions end with empty
input parameter lists, i.e., ().

.
2For more information, see http://www.arduino.cc/en/Reference/FunctionDeclaration
3See, e.g., http://www.arduino.cc/en/Reference/HomePage

void loop() {

 // Loop body goes here

}

return nothing

Name of the function
is “loop”

Accept no inputs

Figure 2: The loop function accepts no inputs and returns no values.

LWTL :: What’s this void loop thing? 4

2.3 Who calls loop?

The setup and loop functions are ordinary Arduino functions that happen to accept no input
parameters and return no values. But that begs two questions. Where would the input parameters
come from if there were any? And where would the return value go if the was one? In other words,
what (or who) calls setup and loop?

The Arduino Integrated Development Environment (IDE) performs some hidden (and routine)
work that simplifies the writing of code4. One of those simplifications is the way that the code
written in a sketch is compiled and then converted to a program that the AVR microcontroller on
the Arduino board can run. When you click the compile button, the IDE first examines the syntax
of your sketch to make sure you haven’t made any obvious, language-violating errors. It then
converts the C code that you can read into binary machine code that the microcontroller can read
and execute. Next, the IDE combines the binary code generated from your sketch with additional
binary code to form a single, executable program that is downloaded to the Arduino board. The
net effect of this build process is that the IDE adds a hidden master or main program that calls
your setup and loop functions.

The master program is hidden in the sense that you do not have to explicitly add it to your
sketch or make any adjustments to it based on the features in your sketch. The hidden program
expects to find the setup and loop functions defined in the appropriate way, i.e., as returning void

and expecting no inputs.
The interaction of the master program with the setup and loop functions is depicted in Fig-

ure 3. The existence of the hidden master program helps to explain why the loop function
is called “loop”. The designers of the Arduino IDE could have called it main event loop or
user function that repeats. Instead they simply called it loop, a name that is descriptive of its
operation, and that also reflects the truth that the loop function is called by a loop in the hidden
master program.

The loop function is like the heartbeat of your program: it repeats indefinitely. During each

4See http://arduino.cc/en/Hacking/BuildProcess

Master Program
Provided by the
IDE when sketch
is compiled

Hidden

Code in user’s sketch

void setup() {

}

void loop() {

}

Called once with

no input data

No data comes back

Called repeatedly

with no input data
No data comes back

Figure 3: The hidden master function calls setup once and repeatedly calls loop.

LWTL :: What’s this void loop thing? 5

Starting
condition

Stopping
condition

Change during
each loop

Loop body
for(i=0; i<5; i++) {
 Serial.println(i);
}

Figure 4: Components of the counter specification in a for loop.

heartbeat all the interesting work of your program occurs.

3 for and while Loops

Since the loop function is just an ordinary Arduino function, it can contain all the normal parts of
the Arduino programming language, including other loops! In this section we describe the syntax of
the two kinds of loop constructs: for loops and while loops. Your Arduino code can have as many
(or as few) loops as you need. Just remember that the loop function is itself inside an invisible loop
that is executing inside the invisible master program.

3.1 for loop

A for loop is an iteration structure that is most often used when there is a known number of
repetitions to be performed. For example, to add up a list of numbers when the length of the list is
known, use a for loop. The generic structure of a for loop is

for (Starting condition; Stopping condition; increment/decrement) {
Loop body

}
The Starting condition, Stopping condition and increment/decrement rule are expressions
the control the changes to the loop counter on each pass through the loop. A loop counter, which
can be an Arduino variable. Often, the loop counter is an integer variable, and often it is a single
letter label like i, j, or k.

Figure 4 shows a for loop that prints out the first five integers, beginning with zero.
The starting condition is an assignment of an initial value to a loop counter. The stopping

condition is a logical statement that involves a comparison. The increment/decrement rule is the
formula for changing the loop counter on each pass through the loop. Table 1 gives some examples of
common combinations of starting conditions, stopping conditions, and increment/decrement rules.

Example: Compute

10∑
i=1

i

int i, sum;

sum = 0;

for (i=1; i<=10; i++) {
sum = sum + i;

}

LWTL :: What’s this void loop thing? 6

Table 1: Examples of rules for counters in a for loop. There are many possible different combinations
of starting conditions, stopping conditions, and increment/decrement rules. The expressions in this
table are common patterns.

Starting
condition

Stopping
condition

Increment
decrement

rule Description

i = 0; i < 5; i++ Start with i=0. Continue as long as i is less than 5.
Increment i by one at the end of each pass through
the loop.

i = 1; i <= n; i+=1 Start with i=1. Continue as long as i is less than or
equal to the value stored in the variable n. Increment
i by one at the end of each pass through the loop.

i = 10; i > 0; i-- Start with i=10. Continue as long as i is greater
than 0. Decrement i by one at the end of each pass
through the loop.

i = 0; i < 8; i+=2 Start with i=0. Continue as long as i is less than 8.
Increment i by two at the end of each pass through
the loop.

3.2 while loop

A while loop is an iteration structure that is most often used when there is a unknown number of
repetitions to be performed. A while loop may have, but does not need, a loop counter. A while

loop is a natural way to repeat an operation until a condition is met, when that condition is not
directly or obviously dependent on the number of repetitions of the loop. The generic structure of
a while loop is

while (Continuation condition) {
Loop body

}
Figure 5 shows an annotated while loop that waits for a random number larger than 5 to be
generated by the built-in random function. Note that this loop does not have a specified number
of iterations to be executed. Because the sequence of numbers returned by a sequence of calls to
random is unpredictable, the number of repetitions of the loop will vary as the code is repeated.

The behavior of a while loop is controlled by the continuation condition. Typically the contin-
uation condition is a simple logical expression. It would seem, therefore, that the while loop does

Starting condition

Continuation
condition

Loop body

number = 99;
while (number > 5) {
 number = random(50);
}

Figure 5: Components of the counter specification of a while loop.

LWTL :: What’s this void loop thing? 7

its job with less need for code than a corresponding for loop. In fact, there is no real code savings
in using a while loop because important statements that affect the continuation condition are not
inside the parenthesis immediately following the while statement. The code in Figure 5 shows that
the while loop has start and stop conditions analogous to the start/stop conditions of a form.

while loops can be used instead of for loops with an appropriate change of the continuation
criteria. For example, the following while loop sums the numbers from 1 to 10, just as the for loop
in the preceding example.

Example: Compute

10∑
i=1

i

int i, sum;

i = 0;

sum = 0;

while (i<=10) {
i = i + 1;

sum = sum + i;

}
The preceding computation is more naturally expressed with a for loop.

As with any programming feature, it is possible to make errors in logic that produce intended
effects. For example, consider two code snippets that show what happens when important statements
are not included.

int i, sum;

sum = 0;

while (i<=10) {
sum = sum + i;

}

int i, sum;

sum = 0;

while (i<=10) {
i = i + 1;

sum = sum + i;

}

The code on the left is an infinite loop – once started it never terminates because the value of i is
never changed. The loop on the right is unreliable because the value of i is not specified before the
loop begins. There is no guarantee that i = 0 at the start of the loop.

Therefore, proper use of a while loop requires the programmer to prepare for the first evaluation
of the starting condition – just like the starting condition in a for loop. The programmer must
write the continuation condition – the complement of the stoppping condition in a for loop. The
programmer must provide some mechanism for changing the outcome of the continuation condition
– just like the increment/decrement part of a for loop. Figure 5 shows how these three basic parts
of loop management show up in a simple while loop.

Therefore, at a logical level, a for loop and a while loop are equivalent. At a practical level
the choice of a for loop or while loop is best evaluated according to the programmers intention or
reason for writing a loop. Use a for loop if you need to iterate a number of times that is known at
the start of the loop. Use a while loop if you don’t know how many iterations are necessary, and
especially if the condition for stopping the iterations are determined by some external event, like
the pressing of a button.

The example on the next page shows a more natural use for a while loop, namely, waiting in
the setup function for a button to be pushed. That would be useful if you wanted to make your
program wait for some condition to be manual established before the loop function is to begin.

LWTL :: What’s this void loop thing? 8

A while loop can be used to wait for user input, as shown in the following example.

Example: Wait for button input

void setup() {
int button pin = 9; // Digital input on pin 9

int button pressed = FALSE; // Status of the button, initially not pressed

pinMode(button pin, INPUT); // Configure the input pin

// Repeat until the user presses a button connected to button pin

while (!button pressed) {
button pressed = digitalRead(button pin);

}
}

LWTL :: What’s this void loop thing? 9

4 Exercises with the Loop Function

In this section a series of very simple Arduino sketches is discussed. Read the sketch and predict
its behavior before you read the explanation provided here.

Note to instructors: It would be good for students to figure this code out for themselves
without the explanations given below. Each program is short enough that students could
enter it manually. However, students would benefit by predicting the outcome after they
have read and studied the code, but before they use the Arduino to run the code.

Explanations are given here to offer pedagogical support. It would be best for students to
study these codes on their own and before they use the Arduino to show how the code
actually works.

Loop 1

void setup() {

Serial.begin(9600);

}

void loop() {

int i = 0;

i = i + 1;

Serial.println(i);

}

What is the output of the code to the left?

This code always prints “1” to the Serial Monitor. That is not
likely to be the intent of the code developer. The declaration int

i = 0 resets the value of i every time during the loop

Loop 2

int i = 0;

void setup() {

Serial.begin(9600);

}

void loop() {

i = i + 1;

Serial.println(i);

}

What is the output of the code to the left?

This code prints the integers 0, 1, 2, . . . and continues until the
reset button in pushed or the Arduino is disconnected from its
power supply. Each integer is on a separate line because the
println method of the Serial object is used.

If the reset button is pushed, the code begins executing again
by running setup once, and then calling loop indefinitely. This
causes the integers to be printed again, starting with 0, 1, 2, etc.

If the power to the Arduino is disconnected, the program stops
running. The next time the power is restored, the program re-
sumes as if the reset button had been pushed.

LWTL :: What’s this void loop thing? 10

Loop 3

void setup() {

Serial.begin(9600);

}

void loop() {

int i;

for (i=0; i<5; i++) {

Serial.println(i);

}

}

What is the output of the code to the left?
The integers from 0 through 4 are printed in a repeating patter,
i.e., 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4. . . . Each integer is
printed on a separate line.

Loop 4

void setup() {

Serial.begin(9600);

}

void loop() {

int i;

for (i=0; i<5; i+=2) {

Serial.println(i);

}

}

What is the output of the code to the left?

Loop 5

void setup() {

Serial.begin(9600);

}

void loop() {

int i;

for (i=0; i<10; i++) {

i = 5;

Serial.println(i);

}

Serial.println("for loop over\n");

What is the output of the code to the left?

This code prints the number 5 indefinitely. Each
copy of 5 is on its own line.

This code contains a programming bug: never
change the loop index inside the body of a for loop.

Loop 6

void setup() {

Serial.begin(9600);

}

void loop() {

int i;

for (i=0; i<10; i++) {

Serial.println(i);

delay(100);

}

Serial.println("for loop over\n");

}

What is the output of the code to the left?

