

Ministero dell'Istruzione, dell'Università e della Ricerca

Indirizzo: TERMOTECNICA

Seconda prova scritta

Un'importante azienda, leader nel commercio degli elettrodomestici, ha aperto un punto di vendita alla periferia di Bologna. L'impianto di riscaldamento è stato realizzato con pannelli fotovoltaici.

La costruzione, che si eleva a un piano fuori terra, è costituita dalle seguenti parti: reparti vari dei prodotti, ufficio del direttore, un magazzino merci avente una superficie complessiva pari a 50 m^2 , spogliatoio e servizi igienici per il personale. La pianta del fabbricato è a sezione rettangolare avente dimensioni $30 \text{ m} \times 20 \text{ m}$ con altezza utile dei locali pari a 4 m.

L'ingresso principale, sul lato di maggior dimensione, è esposto a sud e le aperture all'esterno hanno le seguenti superfici:

■ lato nord 15 m² lato sud 30 m²
■ lato est 15 m² lato ovest 15 m²

Le condizioni di massimo affoliamento prevedono la presenza contemporanea di 160 persone (orario di apertura dalle ore 8 alle ore 20).

Il coefficiente di scambio termico globale di ogni singolo elemento edilizio risulta pari a:

aperture all'esterno 3 W/m² K
 pareti perimetrali: 0,50 W/m² K
 tetto: 0,60 W/m² K
 pavimento: 1 W/m² K

Si tenga presente che l'impianto è collegato alla rete elettrica e che un modulo fotovoltaico (dimensione pari a circa 1300 mm x 1000 mm x 45 mm) al silicio monocristallino ha una potenza pari a 180 Wp (Watt di picco), che corrisponde alla potenza massima che il modulo produce nelle condizioni standard di insolazione e temperatura (1000 W/m² e 25 °C). Si sottolinea che un impianto fotovoltaico avente la potenza di 1kWp (chilowatt di picco), installato in Italia settentrionale, nelle migliori condizioni locali di funzionamento (inclinazione 30° rispetto all'orizzontale, orientamento a sud), produce, indicativamente, 1000 kWh di energia elettrica all'anno.

Il candidato, dopo aver scelto con opportuno criterio i dati mancanti e aver redatto uno schizzo indicativo dell'edificio, determini la potenza termica dell'impianto di riscaldamento, alleghi uno schema dello stesso e determini le caratteristiche dei componenti principali e dei diversi circuiti.

Le scelte effettuate dovranno essere giustificate e commentate.

Durata della prova: 8 ore

Durante la prova sono consentiti l'uso di strumenti di calcolo non programmabili e non stampanti e la consultazione di manuali tecnici e di raccolte di leggi e norme non commentate.

Ministero dell'Istruzione,

ESAMI DI STATO PER L'ABILITAZIONE ALL'ESERCIZIO DELLA LIBERA PROFESSIONE DI PERITO INDUSTRIALE

Sessione 2010

Indirizzo: TERMOTECNICA

Seconda prova scritta

Un vecchio edificio, sito alla periferia di Venezia, ad un piano fuori terra e avente la pianta a sezione quadrata (lato = 25 m e altezza utile pari a 4 m), è stato completamente ristrutturato per essere utilizzato come ristorante. L'impianto di riscaldamento è stato realizzato con pannelli fotovoltaici.

L'ingresso principale è esposto a sud e le aperture all'esterno hanno le seguenti superfici:

24 m2 lato nord

32 m² lato sud

18 m2 lato est

18 m2 lato ovest

Le condizioni di massimo affoliamento prevedono la presenza contemporanea di 140 persone. Il ristorante è aperto 12 ore al giorno (dalle ore 12 sino alle 24).

Il coefficiente di scambio termico globale di ogni singolo elemento edilizio risulta pari a:

W/m2 K aperture all'esterno 3 W/m2 K pareti perimetrali: 0,50 W/m2 K 0.60 W/m2 K pavimento:

Si tenga presente che l'impianto è collegato alla rete elettrica e che un modulo fotovoltaico (dimensione pari a circa 1300 mm x 1000 mm x 45 mm) al silicio monocristallino ha una potenza pari a 180 Wp (Watt di picco), che corrisponde alla potenza massima che il modulo produce nelle condizioni standard di insolazione e temperatura (1000 W/m² e 25 °C). Si sottolinea che un impianto fotovoltaico avente la potenza di 1kWp (chilowatt di picco), installato in Italia settentrionale, nelle migliori condizioni locali di funzionamento (inclinazione 30° rispetto all'orizzontale, orientamento a sud), produce, indicativamente, 1000 kWh di energia elettrica all'anno.

Il candidato, dopo aver scelto con opportuno criterio i dati mancanti e aver redatto uno schizzo indicativo dell'edificio (sala ristorante, cucina, servizi igienici, etc.), determini la potenza termica dell'impianto di riscaldamento, alleghi uno schema dello stesso e determini le caratteristiche dei componenti principali e dei diversi circuiti.

Le scelte effettuate dovranno essere giustificate e commentate.

Durata della prova: 8 ore

Durante la prova sono consentiti l'uso di strumenti di calcolo non programmabili e non stampanti e la consultazione di manuali tecnici e di raccolte di leggi non commentate.

Ministero dell'Istruzione, dell'Università e della Ricerca

ESAMI DI STATO PER L'ABILITAZIONE ALL'ESERCIZIO DELLA LIBERA PROFESSIONE DI PERITO INDUSTRIALE

Sessione 2009

Indirizzo: TERMOTECNICA

Seconda prova scritta

L'impianto di riscaldamento di una villa, sita alla periferia di Novara, è stato realizzato con pannelli fotovoltaici.

La costruzione, che si eleva per 2 piani fuori terra, oltre al piano interrato e al piano sottotetto, è costituita dalle seguenti parti:

- al piano interrato: box auto, cantina, locali deposito;
- al pian terreno: cucina, bagno, soggiorno, studio, corridoi, ripostiglio;
- al primo piano: n.3 camere, 2 bagni, corridoi.

La pianta del fabbricato è a sezione rettangolare avente dimensioni 12 m x 10 m con altezza utile dei locali pari a 3 m. Le condizioni di massimo affollamento prevedono la presenza contemporanea di 30 persone.

L'ingresso principale, sul lato di maggior dimensione, è esposto a sud e le aperture all'esterno hanno le seguenti superfici:

Piano terra		Primo piano	_
lato nord	6 m ²	lato nord	6 m ²
lato sud	8 m^2	lato sud	8 m ²
lato est	6 m ²	lato est	6 m^2
lato ovest	6 m ²	lato ovest	6 m ²

Il coefficiente di scambio termico globale di ogni singolo elemento edilizio risulta pari a:

aperture all'esterno:	3	W/m ² K
pareti perimetrali:	0,50	W/m ² K
tetto:	0,60	W/m ² K
pavimento:	1	W/m ² K

Si tenga presente che l'impianto è collegato alla rete elettrica e che un modulo fotovoltaico (dimensione pari a circa 1300 mm x 1000 mm x 45 mm) al silicio monocristallino ha una potenza pari a 180 Wp (Watt di picco), che corrisponde alla potenza massima che il modulo produce nelle condizioni standard di insolazione e temperatura (1000 W/m² e 25 °C).

Si sottolinea che un impianto fotovoltaico avente la potenza di 1 kWp (chilowatt di picco), installato in Italia settentrionale, nelle migliori condizioni locali di funzionamento (inclinazione 30° rispetto all'orizzontale, orientamento a sud), produce, indicativamente, 1000 kWh di energia elettrica all'anno.

Il candidato, dopo aver scelto con opportuno criterio i dati mancanti e aver redatto uno schizzo indicativo della villa, determini la potenza dell'impianto di riscaldamento, alleghi uno schema dello stesso e determini le caratteristiche dei componenti principali e dei diversi circuiti.

Le scelte effettuate dovranno essere giustificate e commentate.

Durata della prova: 8 ore

Durante la prova sono consentiti l'uso di strumenti di calcolo non programmabili e non stampanti e la consultazione di manuali tecnici e di raccolte di leggi non commentate.

Ministero dell'Istruzione, Muniversità e della Ricerca

ESAMI DI STATO PER L'ABILITAZIONE ALL'ESERCIZIO DELLA LIBERA PROFESSIONE DI PERITO INDUSTRIALE

Sessione 2008

Indirizzo: TERMOTECNICA

Seconda prova scritta

Un supermercato, sito alla periferia di Milano, che si eleva per 2 piani fuori terra, oltre al piano interrato e al piano sottotetto, è costituito dalle seguenti parti:

al piano interrato: parcheggio auto riservato alla clientela,

al piano terreno: reparto generi alimentari, ufficio, un magazzino merci avente una superficie complessiva pari a 80 m², spogliatoio e servizi igienici per il personale,

al primo piano: reparto casalinghi e cartoleria.

La pianta del fabbricato è a sezione rettangolare avente dimensioni 38 m x 22 m, con altezza utile dei locali pari a 4 m.

Le condizioni di massimo affollamento prevedono la presenza contemporanea di 500 persone e l'orario di apertura è compreso fra le 8 e le 20 per un totale di 12 ore al giorno.

L'ingresso principale, sul lato di maggior dimensione, è esposto a sud e le aperture all'esterno hanno le seguenti superfici:

Piano terra		Primo piano		
lato nord	44 m ²	lato nord	36 m^2	
lato sud	64 m^2	lato sud	52 m^2	
lato est	30 m^2	lato est	22 m^2	
lato ovest	30 m^2	lato ovest	22 m^2	

Il coefficiente di scambio termico globale di ogni singolo elemento edilizio risulta pari a:

aperture all'esterno:		$W/m^2 K$
pareti perimetrali:		$W/m^2 K$
tetto:	0,60	$W/m^2 K$
pavimento:	1	$W/m^2 K$

Il candidato, dopo aver scelto con opportuno criterio i dati mancanti e aver redatto uno schizzo indicativo dell'edificio (supermercato, vano ascensore, vano scale, centrale termica, ecc.), determini la potenza dell'impianto di riscaldamento, alleghi uno schema dello stesso e determini le caratteristiche dei componenti principali e dei diversi circuiti.

Le scelte effettuate dovranno essere giustificate e commentate.

Durata della prova: 8 ore

Durante la prova sono consentiti l'uso di strumenti di calcolo non programmabili e non stampanti e la consultazione di manuali tecnici e di raccolte di leggi non commentate.