FORMULE EMPIRICHE ATTRITO PERDITE DISTRIBUITE

Haaland equation

The *Haaland equation* was proposed in 1983 by Professor S.E. Haaland of the <u>Norwegian Institute of Technology</u> It is used to solve directly for the <u>Darcy–Weisbach</u> friction factor *f* for a full-flowing circular pipe. It is an approximation of the implicit Colebrook–White equation, but the discrepancy from experimental data is well within the accuracy of the data.

$$rac{1}{\sqrt{\lambda}} = -1.8 \log \left[\left(rac{arepsilon/D}{3.7}
ight)^{1.11} + rac{6.9}{Re}
ight]$$

Swamee-Jain equation

The Swamee–Jain equation is used to solve directly for the <u>Darcy–Weisbach</u> friction factor *f* for a full-flowing circular pipe. It is an approximation of the implicit Colebrook–White equation

$$rac{1}{\sqrt{f}} = -2\logigg(rac{arepsilon/D}{3.7} + rac{5.74}{\mathrm{Re}^{0.9}}igg)$$

Barr equation (1981)

$$rac{1}{\sqrt{f}} = -2\log\Biggl(rac{arepsilon/D}{3.7} + rac{5.158\log\Bigl(rac{\mathrm{Re}}{7}\Bigr)}{\mathrm{Re}\left(1 + rac{\mathrm{Re}^{0.52}}{29}(arepsilon/D)^{0.7}
ight)}\Biggr)$$

Evangelides, Papaevangelou, Tzimopoulos equation (2010)

$$f = rac{0.2479 - 0.0000947(7 - \log \mathrm{Re})^4}{(\log \left(rac{arepsilon/D}{3.615} + rac{7.366}{\mathrm{Re}^{0.9142}}
ight))^2}$$

Table of Fluid Properties (Liquids and Gases)

Fluid	T (°F)	Density (slug/ft ³)	v (ft ² /s)	(°C)	Density (kg/m³)	$(\mathbf{m}^2/\mathbf{s})$
Liquids:						
Water	70	1.936	1.05e-5	20	998.2	1.00e-6
Water	40	1.94	1.66e-5	5	1000	1.52e-6
Seawater	60	1.99	1.26e-5	16	1030	1.17e-6
SAE 30 oil	60	1.77	0.0045	16	912	4.2e-4
Gasoline	60	1.32	4.9e-6	16	680	4.6e-7
Mercury	68	26.3	1.25e-6	20	13600	1.15e-7
Gases (at standard atm	ospheric pres	ssure, i.e. 1 atr	n):			
Air	70	0.00233	1.64e-4	20	1.204	1.51e-5
Carbon Dioxide	68	0.00355	8.65e-5	20	1.83	8.03e-6
Nitrogen	68	0.00226	1.63e-4	20	1.16	1.52e-5
Helium	68	3.23e-4	1.27e-3	20	0.166	1.17e-4

Symbols:

p (greek letter rho) = Density (units are mass/volume). The English (U.S. Customary Unit) for mass is the slug. The SI (metric) unit for mass is the kg.

v (greek letter nu) = kinematic viscosity (units are length squared/time). If you're more familiar with dynamic viscosity μ (greek letter mu), then it may help to know that $v = \mu/p$.